Critical points of distance functions and applications to geometry
نویسنده
چکیده
8. Introduction Critical points of distance functions Toponogov's theorem; first application:a Background on finiteness theorems Homotopy Finiteness Appendix. Some volume estimates Betti numbers and rank Appendix: The generalized Mayer-Vietoris estimate Rank, curvature and diameter Ricci curvature, volume and the Laplacian Appendix. The maximum principle Ricci curvature, diameter growth and finiteness of topological type. Appendix. Nonnegative Ricci curvature outside a compact set.
منابع مشابه
Information Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملNew spatial clustering-based models for optimal urban facility location considering geographical obstacles
The problems of facility location and the allocation of demand points to facilities are crucial research issues in spatial data analysis and urban planning. It is very important for an organization or governments to best locate its resources and facilities and efficiently manage resources to ensure that all demand points are covered and all the needs are met. Most of the recent studies, which f...
متن کاملCommon fixed points for a pair of mappings in $b$-Metric spaces via digraphs and altering distance functions
In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings satisfying some generalized contractive type conditions in $b$-metric spaces endowed with graphs and altering distance functions. Finally, some examples are provided to justify the validity of our results.
متن کاملA TAXICAB VERSION OF A TRIANGLE' S APOLLONIUS CIRCLE
One of the most famous problems of classical geometry is the Apollonius' problem asks construction of a circle which is tangent to three given objects. These objects are usually taken as points, lines, and circles. This well known problem was posed by Apollonius of Perga ( about 262 - 190 B.C.) who was a Greek mathematician known as the great geometer of ancient times after Euclid and Archimede...
متن کاملNear Pole Polar Diagram of Points and its Duality with Applications
In this paper we propose a new approach to plane partitioning with similar features to those of Polar Diagram, but we assume that the pole is close to the sites. The result is a new tessellation of the plane in regions called Near Pole Polar Diagram NPPD. Here we define the (NPPD) of points, the dual and the Contracted dual of it, present an optimal algorithms to draw them and discuss the appli...
متن کامل